
Agile – Extreme Programming
By By 
Sunil Kumar(Master of Sc.)
Bangalore, India



Agenda
• History of XP
• Overview of XP
• Activities
• Value
• Principles
• Practices• Practices
• Rules

– Planning
– Managing
– Design
– Coding
– Testing

• Summary



History of Extreme Programming(XP)

• Extreme Programming is a software development
methodology which is intended to improve
software quality and responsiveness to changing
customer requirements.

• Extreme Programming takes its name from the• Extreme Programming takes its name from the
idea that the beneficial elements of traditional
software engineering practices are taken to
extreme levels.
– As an example, code reviews are considered a

beneficial practice. Taken to the extreme, code can be
reviewed continuously with the practice of pair
programming.



History of Extreme Programming(XP)
• Extreme Programming was created by Kent Beck during his work of

Comprehensive Compensation System payroll project(C3).
• In 1996, Chrysler called in Kent Beck to help with their struggling C3

project as an external consultant.
• Initially, Chrysler attempted to implement a package solution, but it

failed because of the complexity surrounding the rules and
integration. From this point of crisis, Kent Beck and his team took
over, effectively starting the project from scratch. The classicover, effectively starting the project from scratch. The classic
Waterfall development approach had been tried and failed, so
something drastic was required.

• Fundamentally, the C3 team focused on the business value the
customer wanted, and discarded anything that did not work
towards that goal.

• Extreme Programming was created by developers for developers.
The XP team at Chrysler was able to deliver their first working
system within 1 year. Development continued over the next year
with new functionality being added through smaller releases.



Overview of Extreme Programming

• Extreme Programming can be described as a software
development discipline that organizes people to
produce high-quality software more productively.

• Extreme Programming attempts to reduce the cost of
changing requirements by having multiple short
development cycles rather than one long one like indevelopment cycles rather than one long one like in
Waterfall.

• With Extreme Programming, changes are a natural,
inescapable, and desirable aspect of software
development projects, and should be planned for
instead of attempting to define a stable set of
requirements up front.



Overview of Extreme Programming

• 4x Activities
– Coding, testing, listening, and designing.

• 5x Values
– Communication, simplicity, feedback, courage, and respect

• 3x Principles• 3x Principles
– Feedback, assuming simplicity, and embracing change.

• 12x Practices under four groups
– Fine-scale feedback, continuous process, shared

understanding, and programmer welfare.
• 29x Rules split into the five groups.

– Planning, managing, designing, coding, and testing. Let's
first take a look at the four activities.



4- Activities
• Coding

– Coding is the most important product of the Extreme
Programming process. Without code, there is no working
product.

• Testing
– We cannot be certain of having a working system or product

unless we have tested it. With Extreme Programming, we ideally
want to automate as much of your testing as possible so that
unless we have tested it. With Extreme Programming, we ideally
want to automate as much of your testing as possible so that
you can repeat the testing frequently. This is done by writing
unit tests cases.

– With XP, the developer will practice test-driven development.
We write a failing test first and implement just enough code to
pass the test, and then refactor the code to a better structure,
while tests still pass.

– The programmer will strive to cover as much of their code in
unit tests as they can to give them a good level of overall code
coverage. This code coverage will help build up trust that the
system operates as expected.



4- Activities

• Listening
– Programmers must listen to what the customers need

the system to do and what business logic is required.
– They must understand these needs well enough to

give the customer feedback about the technical
aspects of how the problem can be solved or cannot
give the customer feedback about the technical
aspects of how the problem can be solved or cannot
be solved.

– The requirements from the customer are documented
as a series of user stories. These user stories help to
drive out a series of acceptance tests, which help
determine when a user story is completed and
working as expected. Once user stories and
acceptance tests are written, the developers can then
start their planning and estimating.



4- Activities

• Designing
– To create a working system or product, requirement

gathering, coding, and testing should be all you need, but
in reality software systems are very complicated, so you
will need to perform a level of overall system design.

– This doesn't mean that you would need to create a several– This doesn't mean that you would need to create a several
hundred page design document, as that could be quite
wasteful, but there is definite value in producing an overall
system design where you look at the overall structure of
the system and its dependencies.

– Ideally you want to create a system where all of the
components are as decoupled from each other as they can
be, so that a change in one component doesn't require
sweeping changes across the rest of the system.



5-Values

• Communication
– Good communication is essential to any project.

Honest, regular communication allows you to adjust
to change. XP puts developers and customers in
constant communication. A customer set business
priorities.priorities.

– When we have a question about a feature, we should
ask the customer directly. A 5 minute face-to-face
conversation, peppered with body language, gestures,
and white board drawings, communicates more than
an email exchange or conference call can, so removing
the communication barriers between customers and
developers increases your flexibility.



5-Values

• Build for Simplicity
– Simplicity means building only the system that

really needs to be built. It means solving only
today's problems today.today's problems today.

– Complexity costs a lot and predicting the future is
very hard. Armed with communication and
feedback it's much easier to know exactly what
you need.



5-Values
• Learning from Feedback

– Feedback means asking questions and learning from the
answers. The sooner we can get feedback, the more time we
have to react to it.

– XP provides rapid, frequent feedback. Every XP practice is part
of building feedback loop. The best way to reduce the cost of
change is to listen to and learn from all of those sources as often
of building feedback loop. The best way to reduce the cost of
change is to listen to and learn from all of those sources as often
as possible. This is why XP concentrates on frequent planning,
design, testing, and communicating.

– Rapid feedback reduces the investment of time and resources in
ideas with little payoff. Failures are found as soon as possible,
within days or weeks rather than months or years, and this
feedback helps you to refine your schedule and your plans.

– It allows you to steer your project back on track as soon as
someone notices a problem and identifies when a feature is
finished.



5-Values

• Having Courage
– Courage means making the hard decisions when

necessary. If a feature isn't working, fix it. If some
code is not up to standard, improve it. If you're not
going to deliver everything you promised on schedule,
be up front and tell the customer as soon as possible.be up front and tell the customer as soon as possible.

– Courage is a difficult virtue to apply. No one wants to
be wrong or to break a promise.

– The only way to recover from a mistake, though, is to
admit it and fix it. Delivering software is challenging,
but meeting that challenge instead of avoiding it,
leads to better software.



5-Values

• Having Respect for the team and Project
– Respect underlies the other values previously

mentioned. Every member of the team must care
about the project.

– Intrinsic rewards like motivation, enjoyment, and job– Intrinsic rewards like motivation, enjoyment, and job
satisfaction beat extrinsic reward like employee-of-
the-month awards or physical rewards every time.

– Developers should always respect the expertise of the
customers and vice-versa, and managers should
always respect the developers right to accept
responsibility and receive authority over their work.



3-Principles

• Feedback
– XP stresses that minimal delay between an action and

its feedback is critical to learning and making changes.
With frequent feedback from the customer, a
mistaken design decision made by the developer will
be noticed and corrected quickly, before thebe noticed and corrected quickly, before the
developer spends much time implementing it.

– Unit tests contribute greatly to the rapid feedback
principle. This includes running not only the unit tests
that test the developer's code, but running, in
addition, all unit tests against the software using an
automated process that can be initiated by a single
command as part of a build.



3-Principles

• Assuming Simplicity
– Assuming simplicity is about treating every problem as

if its solution were extremely simple.
– Traditional system development methods say to plan

for the future and to code for reusability. Extremefor the future and to code for reusability. Extreme
Programming rejects these ideas.

– Extreme Programming applies incremental changes.
For example, a system might have small releases every
3 weeks. When many little steps are made, the
customer has more control over the development
process and the system that is being developed.



3-Principles

• Embracing Changes
– The principle of embracing change is about not working

against changes, but embracing them.
– For instance, if at one of the iteration planning meetings it

appears the customer's requirements have changed
dramatically, programmers are to embrace this and plandramatically, programmers are to embrace this and plan
new requirements for the next iteration.

– Under Waterfall, changes in requirements are seen as a
very bad and costly thing to happen. Even small changes
can have a very large impact to a program at work. If any
of the main fundamental requirements change under
Waterfall, it could put the entire project at risk of being
cancelled. This risk is drastically minimized.


